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We present measurements of the local diattenuation and retardance of thin-film specimens by using
techniques that combine near-field scanning optical microscopy �NSOM� and a novel polarization-
modulation �PM� polarimetry utilizing Fourier analysis of the detected intensity signal. Generally,
quantitative near-field polarimetry is hampered by the optical anisotropy of NSOM probes. For exam-
ple, widely used aluminum-coated pulled-fiber aperture probes typically exhibit a diattenuation near
10%. Our analysis of aperture diattenuation demonstrates that the usual techniques for nulling a PM
polarimeter result in a nonzero residual probe retardance in the presence of a diattenuating tip. How-
ever, we show that both diattenuation and retardance of the sample can be determined if the corre-
sponding tip properties are explicitly measured and accounted for in the data. In addition, in thin films
��100 nm thick�, where the sample retardance and diattenuation are often small, we show how to
determine these polarimetric quantities without requiring alignment of the fast and diattenuating axes,
which is a more general case than has been previously discussed. We demonstrate our techniques by
using two types of polymer-film specimens: ultrahigh molecular weight block copolymers �recently
noted for their photonic activity� and isotactic polystyrene spherulites. Finally, we discuss how changes
in the tip diattenuation during data collection can limit the accuracy of near-field polarimetry and what
steps can be taken to improve these techniques. © 2003 Optical Society of America

OCIS codes: 120.0120, 120.5410, 180.5810, 160.5470.
1. Introduction

Since the introduction of aperture-based near-field
scanning optical microscopy �NSOM� more than 15
years ago,1,2 it has been the intent of numerous re-
searchers to use this technique to characterize the
local optical properties of materials. The need for
such a characterization tool is underscored by the
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recent emergence of microfabricated and self-
assembled photonic devices,3 the efficacy of which
depend on the optical properties of submicrometer-
length features. To date, however, NSOM studies
have been largely qualitative, serving to define the
limits of the technique and providing a list of con-
trast mechanisms governed by, e.g., topography,4,5

interference,6 and scattering,7–11 which, while in-
teresting and often useful, do not entirely meet the
goal of measuring local optical properties such as
diattenuation and birefringence. Although a large
body of literature exists on materials characterized
by using NSOM, only a small subset claims to mea-
sure material properties quantitatively.

Arguably, of this subset, techniques involving flu-
orescence measurements, polarization NSOM, or
some combination of the two have been most success-
ful in generating quantitative optical data. Simple
static polarimetric NSOM �where a specific polariza-
tion state of light is used to excite the sample and
another polarization state is detected� and the var-
ious artifacts that can occur with it have been dis-
cussed by many authors5,12–14 in many different
contexts, including investigations of small metal



structures,5,12 magnetic films,12,15 lipid films,16

J-aggregates,17 conjugated polymers,18–21 and
liquid-crystal droplet structure, dynamics,22 and
birefringence.22,23 Static polarization techniques
have also been used to read, write, and characterize
single magnetic bits.24 The introduction of
polarization-modulation techniques to NSOM13 pred-
icated increases in both the quality and the informa-
tion content of polarimetric images. For example,
Ade et al.25 used a modulating analyzer to improve
static polarimetry measurements; by modulating the
analyzer, one can obtain both parallel- and crossed-
polarizer images simultaneously. The authors used
this technique to characterize qualitatively the bire-
fringence of Kevlar fibers and polymer-dispersed liq-
uid crystals.25 Polarization modulation �PM� of the
excitation light with an electro-optic modulator was
used in conjunction with NSOM by Higgins et al.26 to
measure the orientation of mesoscopic crystals and
by the Heinzelmann group to study magnetic and
liquid crystalline materials.27–29 With corrections
for tip diattenuation,30 Tan et al.31 and Wei et al.32

used the same technique to study the diattenuation of
thin-film conjugated polymers. A variety of other
polarization-modulation �PM� schemes in NSOM can
be found,33–38 but the above-mentioned schemes con-
stitute those most closely related to this work. The
group of J. W. P. Hsu, who presented direct mea-
surements of retardance and fast axis orientation of
semiconductor specimens,39 first implemented quan-
titative NSOM polarimetry capable of both diattenu-
ation and retardance measurements using PM.

In this paper we build on the work of McDaniel et
al.39 through improved measurement methods and
data-analysis techniques that increase the accuracy
of retardance and diattenuation measurements and
thus provide a better means of characterizing the
optical properties of materials structured on the sub-
micrometer level. In particular we address chal-
lenges that currently denigrate the usefulness and
accuracy of polarimetric NSOM �1� by showing how
measurements can be made and analyzed on general
thin films where the fast and the diattenuating axis
need not be the same, �2� by demonstrating the limits
of the technique and quantitatively discussing the
uncertainties involved, and �3� by showing �for what
we believe to be the first time� how to account cor-
rectly for tip diattenuation and the resulting residual
retardance in PM NSOM data. We demonstrate our
NSOM polarimeter on two mesostructured polymer
film specimens: �1� ultrahigh molecular weight
block copolymers,40–42 which microphase separate43

to form domains patterned on an approximately
100-nm length scale and have been recognized re-
cently for their photonic bandgap behavior41,42; and
�2� thin-film crystalline polymer spherulites �here of
isotactic polystyrene�, the understanding of which
has benefited significantly from classical far-field po-
larimetry.44

In Section 2 we present a review of the type of PM
polarimetry implemented in this work with some
simple results derived or quoted and approximations

discussed. In Section 3 we describe the NSOM po-
larimeter and data acquisition. In Section 4 we
show how probe diattenuation and residual retar-
dance can be correctly measured, and in Section 5 we
show typical probe-only data and address the prob-
lems involved when using an aperture probe. Here
the accepted procedure for nulling the retardance of
the near-field probe is discussed in terms of uncer-
tainties and errors that can result. In Section 6 we
describe the characterization of a generic linearly di-
attenuating and linearly birefringent sample in the
presence of the imperfect tip discussed in Sections 4
and 5. This analysis has fewer assumptions and
approximations than in previous work, yet still yields
a tractable formalism and allows for the sample di-
attenuation, diattenuating axis alignment, retar-
dance, and fast axis alignment to be extracted from
the data. In Section 7 we present measurements of
diattenuation in block copolymer specimens. A dis-
cussion of modeling is initiated; preliminary results
show that much of the diattenuation contrast ob-
served is due to the unique near-field coupling of the
probe and the sample and details of the NSOM ap-
erture. In Section 8 we demonstrate the full power
of this technique through the combined retardance
and diattenuation measurements of polystyrene
spherulites. Finally, in Section 9 we continue the
discussion of modeling the tip–sample interaction,
consider the applicability of a Jones or Mueller ma-
trix approach to an aperture-confined light source,
and discuss other concerns and future possibilities of
this technique.

2. Polarization-Modulation Polarimetry

In polarimetry the change in the polarization of light
as it passes through a sample is measured and used
to ascertain the properties of a material. A typical
polarimeter places a sample between a polarization-
state generator and a polarization-state analyzer.
The polarimetric properties of a homogeneous, sta-
tionary material can be described by eight parame-
ters: a global phase change �corresponding to the
average index of refraction of a material�, a global
absorption or transmission, two eigenpolarizations
�polarizations for which light propagates through
the materials with no polarization state change�
specified by four parameters �each has an angle and
ellipticity�, and the relative phase change and rel-
ative absorption �or relative transmittance� for
eigenpolarized light �the ratio of the eigenvalues�.
To completely measure all these parameters, eight
independent measurements must be done, varying
both the input polarization and the polarization
sensitivity of the detector. However, it is often ad-
vantageous to apply various approximations and lim-
itations that reduce the number of required
measurements. Polarimetric measurements cannot
generally be used to determine the overall phase
change �due to the average index and thickness� of
the material, which would require an interferometric
measurement. In this work we do not attempt to
measure circular diattenuation or circular retar-
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dance of the sample, only linear retardance and lin-
ear diattenuation. In addition, other researchers
have assumed that the fast and diattenuating axes
have identical orientation.39,45 Since the assump-
tion of coaligned axes restricts the range of samples
that can be examined, it is not employed in this work
�except for illustration purposes in this section�.
Given these assumptions, five parameters are left to
be determined: the overall absorption, the relative
absorption �dichroism� or transmittance �diattenua-
tion� of the two eigenpolarizations, linear birefrin-
gence �or more generally the linear retardance�, and
orientations of the fast and dichroic or diattenuating
axes. Use of a PM technique,46,47 described below,
further reduces the number of polarizer�analyzer
configurations for which data must be acquired. In
this work we use only two different configurations of
our polarimeter, and Fourier analysis of the detected
signal, to obtain these five parameters.

We define the term diattenuation below as the dif-
ference in transmittance of two polarization modes of a
system. Note that the term dichroism is sometimes
used in this capacity, although dichroism more tradi-
tionally refers to the difference in absorption coeffi-
cients.48 Furthermore use of the term dichroism is
sometimes constrained to uniaxial crystals rather than
systems where scattering or reflection is the main
cause of the difference in absorption or transmission.

When the Jones matrix formalism is used, an ar-
bitrary polarization element J can be decomposed
into two elements, J � JdJr, where Jr, a retarder, is
represented by a unitary matrix and Jd, a diattenu-
ator, is represented by a non-negative definite Her-
mite matrix.49 The transmittance of this optical
element is given by T�E� � �JE�2��E�2 and the diat-
tenuation by49

�� J� �
Tmax � Tmin

Tmax � Tmin
,

where

Tmax � max�T�E�� � T�Emax�,

Tmin � min�T�E�� � T�Emin�.

Here Emax and Emin are the incident fields with max-
imum and minimum transmittance, Tmax and Tmin,
which can be shown to be the eigenvalues of Jd

2.
Eigenvectors Emax and Emin are orthogonal. For the
case of linear diattenuation only, J � D�u, v� is given
in Table 1 and the diattenuation reduces to

��D�u, v�� �
u � v
u � v

,

where the transmittances, u and v, are defined such
that u is larger. �Note that we define u and v as the
transmittances for light polarized parallel and per-
pendicular to the diattenuating axis; since u is taken
to be the larger transmittance, the diattenuating axis
therefore represents the polarization direction with
the higher transmission.� The definition of retar-
dance is more subtle and involves the difference in
the phase of the two eigenpolarizations. Even with-
out specifying the eigenpolarizations for J, we know
that since Jr is unitary we can define a phase retar-
dance as49

�� J� � 2 cos�1�tr Jr

2 � ,

which for the case of the linear retarder, Jr � B�	�
�given in Table 1�, gives

��B�	�� � 	,

as expected. Accordingly the retardance corre-
sponds to the relative phase change between the two
eigenpolarizations of Jr as they propagate through
the element represented by J. The birefringence of
a material, usually defined as the difference in index
of refraction in a material for the two eigenpolariza-
tions, can often be calculated from the retardance
given some knowledge of sample thickness and align-
ment.

Note that, while the eigenvectors of both Jr and Jd
must be orthogonal, the general matrix J need not
have orthogonal eigenpolarizations. If the fast and
diattenuating axes are aligned, the eigenvectors of
the system �of J� are orthogonal. This case is the

Table 1. Jones Matrices

�R�
��
Rotation through
Angle 
 from the

x Axis

B�	�
Linear Retarder

Fast x Axis,
Retardance 	

QWR
Quarter-Wave

Retarder

PEM
Retardance
Modulation

Amplitude d,
Frequency �

D�u, v�
Linear

Diattenuator,
Transmittances

u and v

LIN,
Linear

Polarizer
�Perfect�

�cos�
� �sin�
�
sin�
� cos�
� � �exp��

i	
2 � 0

0 exp� i	
2 �	

��i 0
0 1� �exp��id sin��t�� 0

0 1� � 
u 0
0 
v� �1 0

0 0�

Note: Although calculations can be done in either the Mueller or the Jones formalisms �since we do not include depolarization effects�,
we choose here the Jones formalism for simplicity. Shown above are the Jones matrices used for the calculations contained herein.
Equation 1, for example, is the result of a calculation I � E � E*, where

E � R��d� � D�q, r� � B�	� � RT��d� � R��


2 � � QWR � RT��


2 � � R��


4 � � PEM � RT��


4 � � � 
I0

0 � .
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exception rather than the rule, so we make no as-
sumption here about the relative alignments of the
eigenvectors of Jr and Jd.

Our instrument is based on a PM polarimetry
scheme used by Frattini and Fuller46 and Johnson et
al.47 In one implementation �Fig. 1a� light linearly
polarized along the x axis is modulated by a pho-
toelastic modulator �PEM� with the modulated axis
oriented at �45°. �We use a right-handed coordi-
nate system where the angle is measured from the x
axis.� A quarter-wave retarder �QWR� oriented
with its fast axis at �90° follows. This combination
results in light that is linearly polarized, with a po-
larization direction that is modulated at frequency
��2
 through an angle d given by the modulation
amplitude of the PEM. This light passes through
the sample to be collected by a fast detector, typically
a photomultiplier tube, PMT. A circular analyzer,
A1 �a QWR oriented with its fast axis at 0° followed
by a linear polarizer at �45°�, may be inserted behind
the sample for measurements of retardance. If a

linear retardance is present, the light will have a
circular component whose amplitude changes with
the input polarization direction. Accordingly, the
detected signal after A1 will have harmonics of ��2
.
To measure the linear diattenuation, A1 is removed
and the intensity of the transmitted light at the de-
tector is measured directly. An overall transmitted
intensity that changes with the incident linear polar-
ization direction indicates sample diattenuation, and
the magnitude and direction of the diattenuation can
be extracted from the periodicity and amplitude of
the signal. For example, if we assume that a sample
has aligned fast and diattenuating axes, we can cal-
culate the field at the detector �with A1 removed� by
using the Jones matrices in Table 1 and the formal-
ism in the Note. Calculating the intensity at the
detector from this field, we find that

I �
I0

2
�q � r � �q � r�cos�2�d � d sin��t���, (1)

where q and r are the transmittances for light polar-
ized parallel and perpendicular, respectively, to the
diattenuating axis, �d is the alignment angle of the
fast and diattenuating axes, d is the modulation
depth of the PEM, ��2
 is the modulation frequency,
and I0 is the light intensity incident on the PEM
�after the light passes through the first polarizer�.
Note that, as expected, Eq. �1� shows no dependence
on the retardance. With A1 in place the transmitted
intensity is a complicated function of both sample
retardance and diattenuation. Therefore it is often
convenient to limit retardance measurements to sys-
tems where diattenuation is negligible. In this case,
including the effects of A1 on calculation of the in-
tensity at the detector,

I �
I0

2
�1 � sin�	�sin�2�b � d sin��t���, (2)

where �b is the orientation of the fast axis and 	 is the
retardance through the material. Equations �1� and
�2� represent the approximations most commonly
used �in previous work� in the analysis of data taken
with this type of PM polarimeter. To reiterate, the
approximations and assumptions include �1� align-
ment of the fast and diattenuating axis for Eq. �1�, �2�
a purely birefringent sample for Eq. �2�, and �3� no
circular diattenuation or birefringence in either case.
Note that although we use Jones matrices here for
simplicity �and since we are not considering depolar-
ization effects�, Mueller calculus can also be used and
often was used in our data-analysis software.

For analysis purposes Eqs. �1� and �2� are typically
expanded into terms proportional to sin�d sin��t��
and cos�d sin��t��, and these in turn are expanded
into Fourier components, yielding

cos�d sin��t�� � � J0�d� � 2J2�d�cos�2�t� � . . . �,

sin�d sin��t�� � �2J1�d�sin��t� � 2J3�d�sin�3�t�

� . . . �.

Fig. 1. a, Schematic of a PM polarimeter. Light from a 488 nm
laser passes through a polarizer oriented along the x axis. PM light
is prepared with a PEM with modulation axis oriented at �45° to x
followed by a QWR with a fast axis at �90°. The circular analyzer,
A1, is removable. b, Schematic of the apparatus used in this work.
PM modulated light is coupled into the cleaved end of the NSOM
probe fiber, which passes through a fiber polarization controller
�“fiber paddles”� used to control the fiber retardance. The tip/sample
region is shown in the inset. A timing pulse from the PEM is used
via a phase-locked loop to control the data clock �400 kHz�. An FFT
is performed on the collected time series and the dc, 1� and 2�
coefficients are extracted at each point in an image scan.
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As we see below, the first two harmonics contain
information needed to determine the linear retar-
dance and diattenuation. With d � 2.405, chosen to
be the first zero of the zeroth-order Bessel function,
Eq. �1� can be written as I � Idc � I1� sin��t� � I2�

cos�2�t� � . . . , where

Idc � I0�q � r��2, (3)

I1� � I0�q � r�J1�d�sin�2�d�, (4)

I2� � I0�q � r�J2�d�cos�2�d�, (5)

where J1�d� � 0.519 and J2�d� � 0.432. In many
experimental strategies,30,39,47 two lock-in amplifiers
are used to extract the amplitude and phase of I1�

and I2� from the transmitted ac signal, while a low-
pass filter is used to obtain Idc. From Eq. �3� and
careful measurement of I0 it is possible to determine
�q � r�, the sum of the transmittances, although this
is not necessary for measurement of the diattenua-
tion, which is the ratio D � �q � r���q � r�. Instead
I1� and I2� are divided by Idc to obtain

R1� � I1��Idc � 2DJ1�d�sin�2�d�, (6)

R2� � I2��Idc � 2DJ2�d�cos�2�d�, (7)

from which it is straightforward to solve for D and the
angle of the diattenuating axis �d.

A similar computation strategy, now applied to the
case in which A1 is in place, yields analogous ratios
useful for retardance measurements. Equation �2�
can also be written in the form I � Idc � I1� sin��t� �
I2� cos�2�t� � . . ., where

B1� � I1��Idc � 2 sin�	�J1�d�sin�2�b�, (8)

B2� � I2��Idc � �2 sin�	�J2�d�cos�2�b�. (9)

Here 	 is the retardance and �b is the orientation of
the fast axis.

Note that since the 1� term is always sinusoidal
here and the 2� term cosinusoidal, we generally write
an expansion of the detected intensity in the form

I�t� � I0 � I1 sin��t� � I2 cos�2�t� � . . . . (10)

We use a fast Fourier transform �FFT� of the detected
intensity to find the coefficients I0, I1, and I2. These
coefficients can be recovered from the FFT by using

F�0� � I0, (11)

Im�F���� � �I1�2, (12)

Re�F�2��� � I2�2, (13)

where F��� denotes the Fourier transform of I�t� eval-
uated at the frequency �. The minus sign preceding
the 1� term and the factor of 1�2 in the 1� and 2�
terms arise from the choice of FFT algorithms.
These expansions all assume that the phase of the
PEM is zero, that is, the retardance of the device is

d sin��t�, not, for example, d sin��t � ��, where � is
a fixed phase delay. Generally � is not zero but can
be easily measured and accounted for in the data.

The use of a real-time FFT has several advantages
over the use of lock-in amplifiers. In addition to it
being a more flexible system, permitting extension of
the Fourier analysis to more frequency components
without adding electronics, this setup permits the use
of a single input channel to collect all the polarimetric
data. This concern is particularly relevant to the
integration of polarimetry with scanning probe mi-
croscopy, where each input channel must be synchro-
nized with the position of a scanning stage and the
number of input channels is often limited. This de-
sign makes it possible to easily incorporate more gen-
eralized polarimetry, such as that described by
Jellison and Modine,50,51 since an arbitrary number
of Fourier components can be monitored without the
need for further input channels.

3. Near-Field Scanning Optical Microscopy and
Instrumentation

Excellent reviews of NSOM have been written by
Pohl,52 Betzig and Trautman53 and more recently
Dunn.54 A schematic illustration of our NSOM po-
larimeter is in Fig. 1b. This system is similar to that
used by McDaniel et al.39 and more recently by Wei
and Fann.30 A polarizer prepares linearly polarized
light at 0°. The polarization generator consists of a
Hinds Instruments PEM tuned to a nominal modu-
lation frequency of 50 kHz and a modulation axis
oriented at �45°. As described above a QWR ori-
ented with its fast axis at �90° follows the PEM.
Here a fiber coupler and near-field fiber probe are
positioned in front of the sample, and a microscope
objective �numerical aperture 0.85� is inserted just
after the sample to collect the transmitted light.53,54

We use aluminum-coated pulled single-mode fiber
probes55 with aperture sizes ranging from 80 to 180
nm. The aperture is held 5–10 nm from the sample
with a shear-force feedback mechanism56 that em-
ploys a small piezoelectric tube to sense tip motion.
The sample is scanned with a flexure stage �Queens-
gate�, and polarimetric data are acquired at each
point in an image. The detector is a PMT and the
signal is always reported in this paper as current out
of the PMT. To ensure a 1-MHz bandwidth �single
pole�, the PMT is run at high gain �current output
approximately 10 �A with A1 out� and the current
amplifier �SRS Model 570� at low gain and high band-
width �usually 20 �A�V�. A fast digital I�O board
�National Instruments PCI-6110E� is used to acquire
polarimetric data; topographic data are acquired with
a scanning probe microscope �SPM� control system
�RHK SPM 1000 Version 8�.

At each pixel in an image, 8192 intensity data
points spaced by 
�4� � 2.5 �s are acquired. A
phase-locked loop is used to lock the sampling fre-
quency to a multiple of the resonant PEM frequency
so that the 1� and 2� components of the Fourier
transform can be easily recovered. That is, the Fou-
rier component representing the positive PEM fre-
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quency is commensurate with the 1024th point in our
transform, and twice that frequency is commensurate
with the 2048th point. Fourier analysis of the in-
tensity versus time signal then yields the amplitude
of the dc component and the amplitude and phase �or
real and imaginary parts� of the 1� and 2� compo-
nents, which are recorded. The digital I�O board
and the SPM software are located on separate com-
puters; hardware handshaking is implemented be-
tween the two so that the total system accommodates
simultaneous acquisition of all optical and topo-
graphic data. Each point in the image takes �20 ms
to acquire; a 128 by 128 image takes a minimum of
approximately 6 min to acquire. �The actual image
acquisition time in this work was closer to 20 min�.

Two important factors, probe diattenuation and
probe retardance, must be considered when imple-
menting PM in a near-field microscope. As dis-
cussed in detail below, all near-field probes have
some diattenuation arising from asymmetries in the
probe aperture or tip coating. In addition an im-
properly coupled fiber will have a diattenuation aris-
ing from reflections at the cleaved end.39 This can
be sufficiently eliminated by careful coupling into the
fiber and use of a high-quality fiber cleaver. Fiber
probes also may have linear or circular retardance
arising from strain birefringence or geometrical con-
siderations in the fiber tail. The linear retardance
can in principle be nulled with a commercially avail-
able fiber polarization controller, sometimes called
fiber paddles �e.g., see Thorlabs Inc., part FPC030�.
Although we use this device here, we demonstrate
below that the usual method for nulling the fiber
retardance in fact fails in the presence of a diattenu-
ating tip. The circular birefringence of the fiber con-
tributes an overall rotation of the incoming
polarization, which means that absolute orientations
cannot be determined a priori. So �b and �d are
measured relative to an arbitrary but fixed axis.39

Fann and Wei30 have recently shown that the tip
diattenuation can be measured and accounted for and
present a scheme for removing tip diattenuation from
a sample diattenuation measurement. Here we ex-
tend the analysis and show how residual tip retar-
dance and diattenuation can be both measured and
accounted for in the data.

4. Analysis of Probe Diattenuation and Retardance;
Nulling the Polarimeter

For a near-field probe the diattenuation and retar-
dance arise from different sources and there is no
reason to expect their axes to be aligned. In this
work we make the reasonable assumption that retar-
dance arises mainly from strain birefringence and
geometrical effects in the fiber, while the diattenua-
tion develops in the tip. For this case we write an
expression for the intensity at the detector by consid-
ering the following equations. By use of the Jones

calculus, the fields at the input to the fiber �deter-
mined by the optics in Fig. 1� are

E0 � �R��


2 � QWR RT��


2 � R��


4 � PEM

� RT��


4 � � 
I0

0 ��
� 


1
2

�1 � exp��id sin��t���

1
2i

�1 � exp��id sin��t����
�see Table 1 for definitions of the Jones matrices�. If
circular birefringence is not considered, the expres-
sion for the fields at the detector �with A1 and the
sample both out� is given by

E � R��d
t� D�u, v� RT��d

t� R��b
t� B�	t�

� RT��b
t� E0,

where the retardance through the fiber is 	t, the ori-
entation of the fast axis is �b

t, the tip diattenuation is
Dt � �u � v���u � v�, and �d

t is the diattenuating axis
orientation angle. The intensity at the detector is
obtained in the usual way from the field. The re-
sulting expressions for the detected intensity contain
terms proportional to cos�d sin��t�� and sin�d sin��t��,
as in the example above �Eqs. �1� and �2��. Fourier
expansion of the intensity again yields an equation of
the form of Eq. �10�, where the components at 1� and
2� are given by

R1�
t � I1��Idc � 2Dt J1�d��sin�2�b

t�cos�2�d
t � 2�b

t�

� cos�	t�cos�2�b
t�sin�2�d

t � 2�b
t��, (14)

R2�
t � I2��Idc � 2Dt J2�d��cos�2�b

t�cos�2�d
t � 2�b

t�

� cos�	t�sin�2�b
t�sin�2�d

t � 2�b
t��. (15)

J1�d� � 0.519 and J2�d� � 0.432 are the first- and
second-order Bessel functions evaluated at the PEM
modulation amplitude, d � 2.405. Note that both
terms are proportional to Dt with factors that depend
on both the orientation of the fast and diattenuating
axes and the cosine of the probe retardance. As we
demonstrate below, if the diattenuation of the tip is
not too large, the retardance of the probe can be made
small �but not zero� by using the fiber paddles and the
fiber-nulling procedure described by McDaniel et al.39

To this end we expand these equations for small 	t
��0.1� so that cos�	t� � 1. The error involved in this
approximation will be of the order of 	t

2, which for our
probes will always be less than 0.01 �see Fig. 6 and
Section 5�. In this case we can approximate Eqs.
�14� and �15� by Eqs. �6� and �7� �i.e., the case of a
material with an aligned or zero birefringence�:

R1�
t � 2Dt J1�d�sin�2�d

t�, (16)

R2�
t � 2Dt J2�d�cos�2�d

t�. (17)
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Since both terms are of the order of Dt �which is also
small� the accuracy of this measurement depends
critically on how well 	t is nulled. Accordingly, we
consider the probe–fiber retardance and discuss in
detail the conventional nulling procedure and its de-
ficiencies.

For a linear retardance measurement �A1 in place�
of the NSOM probe, the fields at the detector are
given by

E � R��


4 � LIN RT��


4 � QWR R��d
t�

� D�u, v� RT��d
t� R��b

t� B�	t� RT��b
t� E0

and the intensity ratios are given by

B1�
t � 2J1�d��Dt sin�2�b

t�cos�2�d
t � 2�b

t�

� Dt cos�	t�cos�2�b
t�sin�2�d

t � 2�b
t�

� 2

uv

u � v
sin�	t�cos�2�b

t��
� R1�

t � 2J1�d��2

uv

u � v
sin�	t�cos�2�b

t�� , (18)

B2�
t � 2J2�d��Dt cos�2�b

t�cos�2�d
t � 2�b

t�

� Dt cos�	t�sin�2�b
t�sin�2�d

t � 2�b
t�

� 2

uv

u � v
sin�	t�sin�2�b

t��
� R2�

t � 2J2�d��2

uv

u � v
sin�	t�sin�2�b

t�� , (19)

where B1�
t is the ratio I1��Idc and B2�

t is the ratio
I2��Idc for the retardance measurement. Here it is
apparent that the diattenuation terms can be ac-
counted for �without approximation� by a simple sub-
traction of the diattenuation measurement from the
retardance measurement. This pattern repeats it-
self below when we seek to measure the sample re-
tardance in the presence of tip and sample
diattenuation.

To null the polarimeter,39 the fiber paddles are
adjusted so that B1�

t and B2�
t are zero �i.e., below the

level of noise�. Using the approximation for small
diattenuation,


uv
u � v

�
1
2

�1 � Dt
2�1�2 �

1
2 �1 �

1
2

Dt
2 � . . .� � 1�2,

(20)

we see that Eqs. �18� and �19� can be written as

B1�
t � R1�

t � 2J1�d�sin�	t�cos�2�b
t�, (21)

B2�
t � R2�

t � 2J2�d�sin�	t�sin�2�b
t�. (22)

In our measurements we choose tips with diattenu-
ation of �0.1. In this case the approximation of Eq.
�20� incurs a relative error of less than 0.5%. Setting
B1�

t and B2�
t equal to zero implies that

R1�
t � � 2J1�d��sin�	t�cos�2�b

t��,

R2�
t � 2J2�d��sin�	t�sin�2�b

t��.

Using Eqs. �16� and �17� and recalling that d � 2.405
�so that J1�d� � 0.519 and J2�d� � 0.432�, we find that
�sin�	t�� � Dt and not 	t � 0. The retardance of the
fiber can be nulled to zero only if the diattenuation of
the tip is negligible, which it generally is not.

Note that even in the absence of diattenuation both
	t � 0 and 	t � �
 null the polarimeter. This
amounts to the addition of a half-wave plate of un-
known orientation to our polarimeter scheme. In
fact this often turns out to be inconsequential, since
the effect of a half-wave plate is to flip the optical axis
about the slow axis. Knowledge of the absolute an-
gles is already lost owing to the circular birefringence
of the fiber. But in cases in which the tip diattenu-
ation is truly negligible and retardance nulls are
therefore accurate, consistent data analysis and ac-
curate relative angular information between images
requires that we resolve this ambiguity. This can be
done as follows. If we remove the QWR from the
input optics and leave A1 in place, we retrieve a 1�
frequency component that is dependent on cos�	t�:

I1��Idc � 2J1�d��2

uv

u � v
cos�	t�

� Dt sin�	t�sin�2�d
t � 2�b

t�� . (23)

The 2� term is identical to Eq. �16� when the QWR is
in place. This measurement will be dominated by
the first term in the parentheses of Eq. �23�, since
both Dt and 	t are small. But the first term is pro-
portional to cos�	t� and thus will have different signs
for 	t � 0 or 	t � �
. This sign change shows up as
a phase change �or a change in the sign of the imag-
inary part� of the Fourier component of the intensity
signal at 1�.

As an illustration of these effects, in Figs. 2a and
2b, we evaluate B1�

t and B2�
t �by using the full Eqs.

�18� and �19�� as a function of 	t and �b
t �400 values

of 	t and 400 values of �b
t are used in Fig. 2� for a

typical tip with Dt � 0.0588, u � 0.9, v � 0.8, and
�d

t � 1.3 rad. Places where B1�
t and B2�

t are both
zero indicate values of 	t and �b

t that result in a
polarimeter null. In addition, as discussed above,
we can ensure that 	t � 0 �as opposed to a 	t � �
�
by removing the QWR and observing the phase of the
resulting 1� component �Fig. 2c�. If the phase is
�
�2, the null is correct; if not, the fiber paddles
must be repositioned until this condition is met and
B1�

t and B2�
t are again both zero.

In Fig. 3 we examine in more detail the retardance
and fast axis alignment for our example tip. For
typical experimental conditions the noise in our mea-
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surements of I1� and I2� is always less than 1% of I0.
In Fig. 3 the retardance is evaluated for points in
Figs. 2a and 2b where B1�

t and B2�
t are less than 0.01

and where Fig. 2c gives a phase of �
�2. Each of
these points represents a candidate null position.
Note that at these polarimeter null positions the ac-
tual retardance in the fiber probe differs from zero by
�0.06 rad, depending on the value of �b

t. As noted
above, nulling the polarimeter in this fashion does
not result in zero fiber retardance in the presence of
a diattenuating tip.

In our analysis of tip diattenuation we use Eqs. �16�
and �17�, which do not include terms that are second

order or higher in this small but nonzero retardance.
Since our analysis of the retardance also assumes
that the diattenuation is small, it is crucial to exam-
ine the effect of setting 	t � 0 in Eqs. �16� and �17�.
We examine the effect of a nonzero retardance on our
diattenuation measurement by using the exact ex-
pressions for the diattenuation measurement �Eqs.
�14� and �15�� to simulate data on our example tip and
then analyze this simulated data by using Eqs. �16�
and �17�. In Fig. 4 we plot the difference between
the exact values for the diattenuation and diattenu-
ating axis and the values that result from the use of

Fig. 2. Nulling the near field polarimeter. Shown in a and b are maps of B1� and B2� �Eqs. �18� and �19�� respectively, as a function of
the probe retardance ��
 rad to 
 rad� and fast-axis alignment ��
�2 rad to 
�2 rad� for a typical tip with the following properties: Dt �
0.0588, x � 0.9, y � 0.8, �d

t � 1.3 rad. Gray scale corresponds to a range of zero �darkest� to 1.04 in a and 0.87 in b. Shown in c is the
phase of the 1� component �Eq. �22�� when the QWR before the fiber in Fig. 1 is removed. A polarimeter “null” is achieved at a
simultaneous minimum in a and b and when c is less than zero. In c the gray scale corresponds to the range �
�2 rad to 
�2 rad with
the black areas � �
�2 rad and the white areas � 
�2 rad.

Fig. 3. Plots of �top� the resulting residual probe retardance and
�bottom� fast axis alignment for the points in Fig. 2 where a good
null is achieved.

Fig. 4. Plots of the difference between the measured value of Dt

and �d
t �determined by using Eqs. �16� and �17�� and the actual

value used in the model described by Eqs. �14� and �15� for the
points in Fig. 2 where a good null is achieved.
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Eqs. �16� and �17� to analyze these data at the various
possible null positions. From this analysis it is evi-
dent that the range of uncertainty in Dt and �d

t is
small, less than 1% of the actual Dt and within 0.0022
rad of the actual �d

t.
To recapitulate, our polarimeter nulling procedure

is similar to that used by McDaniel et al.,39 except
that we do not assume that this procedure gives us
zero NSOM probe retardance. With the sample re-
moved we set up our instrument for a retardance
measurement �A1 in place�. Fiber paddles are used
to zero the 1� and 2� signals to within noise levels.
We check to see that a 	t � 0 null has been achieved
by removing the QWR and observing the phase of the
resulting 1� component. If this phase is correct, the
QWR is replaced and the resulting measurement of
B1�

t and B2�
t is recorded. Next, A1 is removed, R1�

t

and R2�
t are recorded, and the tip diattenuation �Dt

and �d
t� is measured by using Eqs. �16� and �17�.

With the diattenuation measurement in hand we cal-
culate the residual probe retardance �	t and �b

t� by
using Eqs. �21� and �22� and B1�

t, B2�
t, R1�

t, and R2�
t.

5. Measurement of Probe Diattenuation and
Retardance

In this section we describe an actual measurement of
the NSOM probe polarimetric properties. As dis-
cussed above and demonstrated in Sections 6–8,
knowledge of the probe properties are necessary for
calculation of the sample retardance and diattenua-
tion. Figure 5 illustrates raw polarimetry data col-
lected from an NSOM probe immediately after the

null procedure is performed. �This probe is then
used for the measurements in Figs. 8 and 9.� For
these tip measurements, data are acquired for 5.5 ms
at each of 4096 points over a period of several min-
utes to measure the tip parameters and their stabil-
ity. Figure 5 includes plots of the dc, 1�, and 2�
Fourier component amplitudes for the probe retar-
dance �A1 in� and diattenuation �A1 out� measure-
ments. With A1 out the dc signal is 9.94 �A � 0.05
�A �standard deviation�, the 1� component is 0.079
�A � 0.04 �A, and the 2� component is 0.55 �A �
0.05 �A. With A1 in place the dc signal level drops
by a factor of 2 �5.07 �A � 0.03 �A�, while the 1� and
2� are zeroed at the 0.05 �A � 0.03 �A value, as
expected given the nulling procedure. For these
measurements the nominal PMT calibration is 10
pW��A.

The tip diattenuation is calculated by using the
ratios R1�

t and R2�
t, extracted from the data in Fig. 5

�right� and Eqs. �10�–�13�, �16�, and �17�. The result-
ing distributions of Dt and �d

t are shown in the top
half of Fig. 6 �by black diamonds�. The residual tip
retardance is calculated by using the measured ratios
B1�

t, B2�
t, R1�

t, and R2�
t �which are extracted from

the data in Fig. 5�. First, the measured ratios R1�
t

and R2�
t at each point are subtracted from the cor-

responding ratios B1�
t and B2�

t. Approximations
�21� and �22� are then used to obtain 	t and �t

b.
These distributions are plotted by black diamonds in
the lower two panels of Fig. 6.

Several hours after the null was performed and
after the images in Figs. 7–9 were acquired, polari-

Fig. 5. Amplitudes of the dc �here denoted A0� 1� and 2� Fourier
components of the intensity signal measured with A1 in and A1 out
collected immediately after nulling the polarimeter. The dc com-
ponents, plotted in the top panels, in all cases are the largest
amplitude component. The 1� signals are plotted in black, and
the 2� signals are plotted in gray in the bottom panels. Since the
polarimeter has been nulled, the 1� and 2� components with A1 in
place overlap very near zero.

Fig. 6. Histograms of the diattenuation and residual retardance
of a near-field probe. Data in black �gray� are taken immediately
before �after� the data in Figs. 7–9. This plot illuminates changes
in the tip diattenuation and retardance during a scan.
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metric data were again collected from this tip. The
resulting data are shown as gray diamonds in Fig. 6.
The distributions from Fig. 6 were fit to a three-
parameter Gaussian, f � Ko exp��z2�2�, z � �x �
K1��K2, by using a nonlinear least-squares algorithm,
to enable statistical comparison. The results are in
Table 2. Note that while the retardance is largely
unchanged, the diattenuation shifts substantially af-
ter the tip is used to collect data. It is commonly
reported that aluminum-coated near-field probes
change their shape with use and time. Our data
demonstrate that such changes significantly affect
polarimetric measurements, for when the tip coating
is modified, the diattenuation changes. Although
the tip retardance was more stable over the data-
collection period, note that this is only after a period
of significant drift evident after first mounting the
probe and most likely due to thermal and physical
relaxation of the meter-long fiber tail. Figure 6 il-
lustrates the degree of uncertainty in our polarimetry
measurements. The width of these distributions
�K2� is due to the signal-to-noise level of our PMT
detector and is therefore dependent on the light
throughput of our NSOM probe. The example in
Fig. 6 is representative. In general the most severe
limitation on our measurements is the shift in probe
diattenuation and retardance during the course of
data collection. The degree of this shift varied from
image scan to image scan. While occasionally it was
negligible, generally it was similar to the data in Fig.
6 for the probes in our laboratory. Since these tip
data must be used to calculate sample properties,
these uncertainties limit the accuracy of our sample
diattenuation measurements to roughly the size of
the measured tip dichroism shift. Likewise the un-
certainty in sample retardance measurements will be
limited by shifts in the retardance of the fiber. Since
the retardance of the probe drifts less than the diat-
tenuation, and for additional reasons discussed be-
low, the accuracy of retardance measurements is
likely to be better than the diattenuation measure-
ments. Overall, as a consequence of these observa-
tions, it is recommended that tip diattenuation and
retardance be measured both immediately before and
immediately after image acquisition. In this study
the sample data were analyzed by using both tip
measurements as well as their average to gauge the
effect of probe changes. Unfortunately gross tip

changes during sample collection can result in data
that must be discarded.

6. Analysis of Sample Diattenuation and Retardance

We turn to the subject of sample properties and de-
scribe how to account for tip diattenuation and resid-
ual retardance in sample polarimetry data. As in
the case of tip measurements, there is no assumption
that the fast and diattenuating axes of the sample are

Fig. 7. Raw polarimeter data of a single grain in a block copoly-
mer specimen. Images were acquired simultaneously with A1 out
�diattenuation�. The micrographs are 4 �m � 4 �m in size: a,
topography; b, transmission �dc component of the FFT, here denoted
A0�; c, real part of the 1� component of the FFT; d, real part of the
2� component of the FFT; e, imaginary part of the 1� component of
the FFT; f, imaginary part of the 2� component of the FFT.

Fig. 8. Diattenuation of the sample in Fig. 7 using the tip data
shown as black diamonds in Fig. 6: a, diattenuation; b, diattenu-
ating axis alignment; c, diattenuation histogram; d, histogram of
the diattenuating axis alignment angle.

Table 2. Results of Nonlinear Least-Squares Fits of Data in Fig. 6 to
Three-Parameter Gaussian Function Described in the Text

Distribution Height, K0 Center, K1 Width, K2

Dt after null 87.9 0.064 0.006
Dt after data 81.7 0.077 0.006
�d

t after null 86.8 1.55 rad 0.04 rad
�d

t after data 100.7 1.60 rad 0.03 rad
	t after null 81.3 0.057 rad 0.010 rad
	t after data 79.0 0.060 rad 0.010 rad
�b

t after null 89.5 �0.79 rad 0.07 rad
�b

t after data 77.9 �0.87 rad 0.08 rad
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aligned, and, because of the circular birefringence of
the probe, all orientation angles reported are relative.

We begin with the following two assumptions: �1�
Our samples are both diattenuating and birefringent
but the retardance and diattenuation are small—a
reasonable expectation when investigating �as we do
in this study� ultrathin polymer films. �2� The tip
also exhibits a small diattenuation ��0.1� and retar-
dance ��0.1 rad�. For this case, calculation of the
full expression for the measured intensity �achieved
with Mathematica, Wolfram Research, Inc.� results
in a very long expression for I1� and I2�. In lieu of
recounting this cumbersome result, we proceed di-
rectly to the expressions useful for data analysis.
Using the same approximations as above �including
Eq. �20� for both tip and sample diattenuation, cos�	s�
� 1, and cos�	t� � 1� and calculation procedures de-
scribed above, the ratios of the Fourier components
are �for the diattenuation measurement, i.e., with A1
removed�

R1�
s � 2J1�d��Dt sin�2�d

t� � Ds sin�2�d
s��, (24)

R2�
s � 2J2�d��Dt cos�2�d

t� � Ds cos�2�d
s��. (25)

Note that while the above approximations are correct
to first order in 	s, 	t, Dt, and Ds, Eqs. �24� and �25� are
correct to second order in these parameters and their
products. To the same level of approximation, the
ratios of the Fourier components for a retardance
measurement �A1 in� are

B1�
s � R1�

s � 2J1�d��sin�	t�cos�2�b
t�

� sin�	s�cos�2�b
s��, (26)

B2�
s � R2�

s � 2J2�d��sin�	t�sin�2�b
t�

� sin�	s�sin�2�b
s��. (27)

Equations �24� and �25� �and the tip properties� are
used to arrive at the sample diattenuation. To de-

termine the sample retardance, we first measure the
diattenuation of the sample and then subtract R1�

s

and R2�
s directly from the result of our retardance

measurement, as suggested by Eqs. �26� and �27�.
Note that the tip diattenuation need not be explicitly
accounted for in the retardance measurement if this
procedure is followed.

7. Example: Measurement of Sample Diattenuation

In this section and Section 8 we present data collected
and analyzed with the techniques described above
and discuss the experimental uncertainties in these
measurements.

Figure 7 shows an example of diattenuation mea-
surements performed on an ultrahigh molecular
weight block copolymer specimen.40 The mi-
crophase separation of block copolymers, caused by
the immiscibility of their end-connected constituent
polymer chains or blocks, results in a variety of do-
main motifs tunable through the copolymer composi-
tion. A review of these materials and their
morphologies is in Ref. 57. These spatial patterns
�lamellae, bicontinuous gyroid, hexagonally arranged
cylinders, and body-centered cubic spheres� have the
potential of exhibiting a photonic band structure with
one-, two-, and three-dimensional bandgaps.58,59

The large equilibrium periodicity, L0 � 240 nm, of
microphase separation in our samples makes these
materials suitable as self-assembled photonic crys-
tals with stop bands positioned in the visible
range.42,60 The samples in this study are a
polystyrene-b-polyisoprene �PS-b-PI� block copoly-
mer. Produced by living anionic synthesis in a low-
oxygen�low-water environmental chamber, this
material has a relative molecular mass, Mr � 1.2 �
106, is volume symmetric in composition, and exhib-
its the lamellar motif with L0 � 240 nm. Bulk spec-
imens are processed with a roll-casting technique,
which helps order and align the microphase do-
mains.61 Thin �100-nm� sections are sliced from the
bulk by using cryo-ultramicrotomy and deposited
onto glass coverslip supports. Subsequent exposure
to OsO4 vapor �2 h� preferentially crosslinks the PI
domains. This serves �1� to protect the PI domains
from oxygen degradation, �2� to make these domains
less compliant and therefore more amenable to our
shear-force feedback mechanism, and �3� to enhance
the optical contrast between the PS �n � 1.592� and
PI �n � 1.53� domains. Although this staining
seems at first glance to be an unfortunate artifact of
our technique, note that the increased absorption ex-
hibited by the Os-doped PI domains may mirror ab-
sorptive effects inherent in other treatments, e.g.,
selective domain doping with nanoparticles or chro-
mophores, proposed for enhancing the optical activity
of block copolymers and other photonic specimens.

The micrographs in Fig. 7 represent the raw diat-
tenuation data, collected with A1 removed, as de-
scribed in Sections 2 and 3. All six micrographs
were acquired simultaneously. These images center
on part of a single grain, showing occasional edge
dislocations, and lamellar separations possibly pro-

Fig. 9. Diattenuation of the sample in Fig. 7 where the tip data
shown as gray diamonds in Fig. 6 are used: a, diattenuation; b,
diattenuating axis alignment; c, diattenuation histogram; d, his-
togram of the diattenuating axis alignment angle.
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duced during microtomy. The topography, shown in
Fig. 7a, shows a maximum peak-to-valley variation of
33 nm with an rms roughness of 8.0 nm. Figure 7b
shows the average transmitted light through the
sample �dc amplitude component� measured in mi-
croamperes. Nominal calibration of the PMT is 10
pW��A, so the maximum power level in Fig. 7b cor-
responds to only 5.4 pW. OsO4 crosslinking of PI
causes these domains to contract and enhances their
optical absorption. Accordingly the topographically
lower domains, which are also more absorbing �dark-
er in Fig. 7b�, are identified as PI. However, note
that even in the absence of Os staining we expect the
PI domains to appear darker compared with PS since
the index of refraction of PI is lower.62 In Figs. 7c
and 7e we show the real and imaginary parts, respec-
tively, of the Fourier component of the intensity sig-
nal at frequency �. In accordance with Eq. �10� we
find that the real �cosine� part of this component is
zero. Likewise, in Figs. 7d and 7f, which show the
real and the imaginary parts of the Fourier compo-
nent of the intensity signal at frequency 2�, the imag-
inary �sine� component is zero, as expected.

Analysis of these data by using Eqs. �24� and �25�
and the tip properties in Fig. 6 �measured just before
the sample data� yield the sample diattenuation and
orientation of the diattenuating axis, as shown in
Figs. 8a and 8b, respectively. Image histograms of
these properties are shown in Figs. 8c and 8d. Note
that the sample diattenuation measured here is
small, even when compared with the tip diattenua-
tion, which was near 6% �Fig. 6�. Nonetheless a
distinct pattern of the diattenuation is observed; it
exhibits a maximum at the centers of the PS and PI
regions and is minimum near the interface between
the domains.

The diattenuation of this sample can be understood
by considering the following model, which describes
the effects of a near-field aperture on diattenuation
measurements. Even for a perfectly symmetric
Bethe–Bouwkamp �BB� aperture,63–65 the fields con-
fined to the tip aperture are not symmetric. In the
BB aperture model the field amplitude shows elon-
gation along the polarization direction. Consider
such a field centered over an absorbing PI domain, or
stripe, which is similar in width to the aperture size.
When the polarization is along the stripe direction,
maximum absorption occurs, since the field is aligned
and localized along the stripe. When the polariza-
tion is perpendicular to the stripe direction, the field
is elongated perpendicular to the stripes, a larger
portion of the field leaks out over the nonabsorbing
PS domain, and more light is transmitted. This
anisotropic absorption results in an effective diat-
tenuation with the diattenuating axis oriented per-
pendicular to the stripe. In this scheme the
amplitude of the diattenuation at the center of the
stripe depends on the stripe width. For stripes of
width approximately equal to or smaller than the
tip-aperture diameter, the diattenuation is largest
when the tip is centered on the stripe. As the width
of the stripe surpasses the aperture in size, the diat-

tenuation is maximum some fixed distance from the
edge of the stripe domain and decreases toward zero
in the center of the stripe. Over the less-absorbing
PS domain the situation is reversed from that de-
scribed above. For the case where the stripe width
is smaller than or approximately equal to the tip-
aperture diameter, the diattenuation again reaches a
maximum at the center of the domain, but the diat-
tenuating axis would now be aligned parallel to the
stripe. This behavior is close to the situation shown
in Fig. 8. However, given this hypothesis, it is ex-
pected that the difference in diattenuating axis align-
ment between the PS and the PI domains would be

�2 rad. From Fig. 8d we see that the distribution of
alignment angles has two peaks separated by only 0.8
rad �as determined by a fit to a double Gaussian
function�. This discrepancy has two likely explana-
tions: �1� The BB theory is not sufficient to describe
the tip fields in this experiment, and�or �2� the diat-
tenuation of the tip has not been correctly accounted
for. Regarding the first explanation, although BB
theory is often sufficient to account for the propagat-
ing far fields of an NSOM aperture,66 it fails to ac-
count for many subtleties of the near or evanescent
fields, which depend critically on tip shape and coat-
ing.67 For an asymmetric aperture or a tip with a
rough coating, it is possible that the field asymme-
tries and therefore the apparent diattenuating axes
will be different from those described above. Re-
garding the second explanation, as noted in Fig. 6 and
Section 5, the change in tip diattenuation during a
scan is often the largest source of experimental error
in these measurements. In Fig. 9 the same data are
analyzed by using the tip measurement immediately
after taking sample data �Fig. 6, gray diamonds�.
Here the two peaks in the angular distribution �evi-
dent in Fig. 9b� are no longer resolved in the histo-
gram �Fig. 9d�. The peak in the diattenuation has
also shifted by a factor of almost 2. The overall un-
certainty in the diattenuation measurement is
roughly determined by the size of the shift in Fig. 6.
Note that despite these inaccuracies the precision of
this measurement is limited only by the signal to
noise of the detector and permits us to resolve small
changes between domains, as seen in Figs. 8 and 9.

A more detailed examination of diblock copolymers
studied with this technique, in particular a discus-
sion of their retardance and its relationship to their
birefringence, can be found in Ref. 40.

8. Example: Measurement of Sample Retardance
�and Diattenuation�

To demonstrate retardance measurements, we now
turn to a discussion of thin-film PS spherulites.
These disklike crystallites consist of radially ar-
ranged layers �lamella� of folded chains with inter-
mediate amorphous domains.44 Although the
structure of bulk polymer spherulites is largely es-
tablished,44,68 a variety of less-understood forms are
found in ultrathin ��100-nm� films.69–75 The sensi-
tivity and resolution of PM NSOM can illuminate the
structure of these two-dimensional crystallites,
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where traditional techniques may fail because of low
resolution and the sparse signal inherent in thin
samples.

Spherulite samples were prepared by spin-coating
isotactic polystyrene �purchased as a solution of 90%
isotactic polystyrene in toluene �mass fraction 4.5%�
from Scientific Polymer Products� �Mr � 6 � 105,
Mr�Mn � 3.0� from a 1.0% mass fraction solution in
toluene onto glass coverslips. Film thickness was
measured to be 85 � 4 nm by using an UV-visible
reflectance interferometer with a 0.5-mm spot size.
Samples were dried under vacuum overnight and
crystallized on a gradient hot stage76 so that the film
temperature spanned 110–130 °C for 2 h. Tapping-
mode atomic force microscopy using a Digital Instru-
ments Dimension 3100 Nanoscope III and silicon
cantilevers with a spring constant of 30 N�m was
used before crystallization to confirm that the film
was continuous and contained a low density of de-
fects.

The micrographs in Figs. 10 and 11 represent the
raw diattenuation �A1 removed� and retardance �A1
in place� data, respectively, collected from the semi-
crystalline PS film specimen, as described in Section
3. Although the six micrographs were acquired si-
multaneously, two scans over the sample were nec-
essary to obtain the whole data set. These 4 �m �
4 �m images show a single spherulite roughly cen-
tered in the image and the edge of a second spherulite
on the right side. In this specimen, crystal growth
was arrested before crystallite impingement was

complete. Accordingly the spherulites are sur-
rounded by amorphous PS. The topography, shown
in Fig. 10a �11a�, shows a maximum variation of 61
nm �59 nm� with an rms roughness on top of the
spherulite of 12 nm �13 nm�. Figure 10b �11b� shows
the average transmitted light through the sample,
measured in microamperes �a raw PMT signal�.

Nominal calibration of the PMT for these measure-
ments is 17 pW��A. In Figs. 10c �11c� and 10e �11e�
we show the real and imaginary parts, respectively,
of the Fourier component of the intensity signal at
frequency 1�. In accordance with Eq. �10� we find
that the real �cosine� part of this component is zero.
Likewise in Figs. 10d �11d� and 10f �11f �, which show
the Fourier components of the intensity signal at fre-
quency 2�, the imaginary �sine� component is zero, as
expected.

These data were analyzed with Eqs. �24�–�27� by
using tip-property data collected immediately after
the sample measurement was completed. Here the
tip had a 4.5% diattenuation and a residual retar-
dance of 0.085 rad. Note again that while the tip
diattenuation is needed to obtain diattenuation im-
ages of this spherulite, only tip retardance and the
raw sample diattenuation data �which include tip
diattenuation effects� are needed for the sample re-
tardance measurement �Eqs. �26� and �27��. In that
case the raw diattenuation data are subtracted from
the raw retardance data. Figures 12 and 13 show
images and histograms of the resulting sample diat-
tenuation and retardance. Although there is no ob-

Fig. 10. Raw polarimeter data of a single PS spherulite. Images
were acquired simultaneously with A1 out �diattenuation�. The
micrographs are 4 �m � 4 �m in size: a, topography; b, trans-
mission �dc component of the FFT, here denoted A0�; c, real part of
the 1� component of the FFT; d, real part of the 2� component of
the FFT; e, imaginary part of the 1� component of the FFT; f,
imaginary part of the 2� component of the FFT.

Fig. 11. Raw polarimeter data of a single PS spherulite. Images
are acquired simultaneously with A1 in �retardance�. The micro-
graphs are 4 �m � 4 �m in size: a, topography; b, transmission
�dc component of the FFT, here denoted A0�; c, real part of the 1�
component of the FFT; d, real part of the 2� component of the FFT;
e, imaginary part of the 1� component of the FFT; f, imaginary
part of the 2� component of the FFT.
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vious mechanism for the apparent diattenuation of
these samples, note that topographic features in
NSOM can give rise to polarization-dependent trans-
mission62 that might account for the diattenuation.

In this case the top portion of these images, which
exhibits a band of amorphous material, offers a sec-
ond method of correcting for background birefrin-
gence. The NSOM probe retardance can be
estimated by analyzing data in the amorphous region
first. We assume that any background retardance
in this region is due to the NSOM probe and use this
as an alternative measurement of the probe retar-
dance and fast axis alignment. When the data again
are analyzed with these new values for the tip pa-
rameter, the results in Fig. 14 are obtained. The

effects of this new analysis are �1� to shift amorphous
regions closer to zero retardance and �2� to modify the
fast axis angle histogram so that a uniform distribu-
tion of angles results, as might be expected from a
spherulitic structure.44 In a previous study Camp-
illo and Hsu45 performed a similar analysis of back-
ground retardance that they attributed to substrate
strain. In this work the effect of the tip retardance
�which we know to be substantial� is emphasized. A
better approximation of the retardance of a birefrin-
gent background would probably include contribu-
tions from both the tip and the substrate, with
separate alignment angles, which would likely add
another first-order term to Eqs. �26� and �27�.

For both examples of retardance correction, shown
in Figs. 13 and 14, the retardance histogram shows
two distinct populations, one corresponding to the
amorphous region. Inspection of the images reveals
that this amorphous material is also intercalated into
the spherulite, as expected from these semicrystal-
line specimens. The radial arrangement of the crys-
tallite lamella is clearly shown in the fast axis image,
where, interestingly, defect structures near the crys-
tal nucleus can also be seen. Careful examination of
these spherulite structures, whose optical properties
can now be mapped in detail with 100-nm resolution
by using this technique, will be the subject of future
studies.

9. Further Considerations

A. Limitations of Jones and Mueller Formalisms and the
Need for Modeling

One serious limitation of this and all previous work
concerning near-field polarimetry is the use of a
Jones or Mueller formalism, which includes the as-
sumption that light passing through the sample is
collimated. The Jones formalism, for example, as-
sumes the existence of a two-dimensional Jones vec-

Fig. 12. Diattenuation of the sample in Figs. 10 and 11 calculated
with tip data taken immediately after the scans were completed:
a, diattenuation; b, diattenuating axis alignment; c, diattenuation
histogram; d, histogram of the diattenuating axis alignment angle.

Fig. 13. Retardance of the sample in Figs. 10 and 11 calculated
with tip data taken immediately after the scans were completed:
a, retardance; b, fast axis alignment; c, retardance histogram
showing a clear amorphous peak; d, histogram of the fast axis
alignment angle.

Fig. 14. Retardance of the sample in Figs. 10 and 11 where the
amorphous material in the upper central part of the image is used
for retardance background subtraction �see text�: a, retardance;
b, fast axis alignment; c, retardance histogram showing a clear
amorphous peak; d, histogram of the fast axis alignment angle.
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tor to describe the propagation of light through the
polarimeter, which can only be true in the case of a
collimated field. In the vicinity of the near-field
aperture the field is not collimated and has a signif-
icant component polarized along the optical axis of
the microscope. Also problematic is the assumption
that the intensity distribution is cylindrically sym-
metric or even plane wave. For example, in Section
7 we show that the apparent diattenuation of our
samples is likely not an intrinsic diattenuation but
rather a result of the polarization-dependent anisot-
ropy of the near fields and their interaction with the
sample. This conclusion cannot be inferred from a
Jones-type calculus alone but is supported by prelim-
inary modeling outlined below. Confocal micropola-
rimetry has a similar drawback. In this case the use
of high numerical-aperture �NA� objectives and a pin-
hole at the detector results in fields that are not
collimated at the sample or detector positions. Ac-
cordingly a Jones formalism is not applicable. In
response to this Török et al.77 discussed how a gen-
eralized �3 � 3� form of Jones matrices can be used to
model the polarization properties of a confocal micro-
scope. A similar treatment applied to NSOM would
be difficult or impossible, because there is currently
no simple way to model a near-field probe with a
generalized Jones matrix, as there is for a high NA
lens.

Without these factors included in data analysis,
near-field polarimetry data reflect an effective diat-
tenuation and retardance that arise from both the
tip–sample interactions and the light-collection
scheme. Thus, to measure accurately the intrinsic
optical properties of the sample, we need to build a
better model that includes both collection optics and
near-field effects. In an attempt to address some of
these issues we propose the following model, the re-
sults of which will be the focus of future work. With
the thin-film block copolymer samples as an interest-
ing test case, these specimens are modeled as thin
slabs �40–80 nm thick� consisting of alternating par-
allel stripelike domains �100–200 nm wide� of two
different polymers. Three contrast mechanisms are
considered: �1� The index of refraction difference be-
tween polymer species. �2� The difference in absorp-
tion between polymer domains �described
qualitatively in relation to Fig. 8�. �3� Surface topog-
raphy that is correlated with the stripe morphology
�i.e., one type of domain is higher�. The model also
includes illumination by a metal-coated optical-fiber
NSOM tip and a postsample collection optic with a
NA of 1. We use a finite-element time-domain ap-
proach to obtain fields transmitted and reflected by
the model structured film.62 Simulations can be
performed for any linear polarization of the probe
field in any direction, but here the poignant polariza-
tions are parallel and perpendicular to the stripes.
Difference in the far-field transmission for the two
polarizations gives the local effective diattenuation.
Difference in the far-field phase for the two polariza-
tions gives the local effective retardance.

Each of these three factors can cause an effective

diattenuation or retardance even in the absence of
any intrinsic sample diattenuation or birefringence.
For the case of absorption contrast, �2� above, in the
discussion accompanying Fig. 8 we describe how an
effective diattenuation might occur. Regarding in-
dex contrast, �1� above, it was recently shown62 that
a large-index film near an NSOM tip can significantly
reduce the tip–air impedance mismatch, leading to a
higher light flux from the tip when the probe is over
the film. In this case, holes in the film actually
transmit less. Such an effect would be expected to
persist in the model specimens. However, given the
relatively small index changes in these films �for
amorphous PS, n � 1.592, while for amorphous but
crosslinked PI, n � 1.53�, the effect is small. Be-
cause of the anisotropy of the probe fields and the
stripe symmetry of the sample, this coupling out of
the tip is polarization dependent, which may contrib-
ute to effective diattenuation or birefringence. Scat-
tering in the films, the result of local index changes,
also contributes to an effective diattenuation or re-
tardance. The third contrast mechanism, topogra-
phy, may also produce effective diattenuation in films
with parallel stripes due to the polarization depen-
dence of diffraction by the topographic grating. To-
pographic contrast produces an effective
diattenuation that is zero near the interfaces and
whose diattenuating axis changes direction by 90 deg
at the interface, resulting in a pattern of diattenua-
tion similar to that generated by absorption. The
effects of topographic and absorption contrast might
be distinguishable because the polarization depen-
dence of transmission and reflection has the same
sign for absorption contrast and the opposite sign for
topographic contrast.

B. Reducing Experimental Uncertainties

Recognizing that diattenuation of the NSOM tip can
be problematic, other authors have fabricated more
symmetric probes through, for example, ion milling of
the aperture.27 However, aluminum-coated aper-
tures can change during data collection. Indeed we
find that the largest experimental uncertainties in
our NSOM polarimetry data are rooted in changes in
tip diattenuation, as illustrated in Fig. 6. Although
this problem may be addressed through fabrication of
more robust probes,37,78–80 a strategy that can be
applied to existing probes is to reduce the number of
scans necessary to generate polarimetry data,
thereby decreasing wear to the tip. In our tech-
nique, for example, two images are used to calculate
and map the sample retardance. Various schemes
exist for reducing the number of required scans. For
example, multiple detector channels, each with a dif-
ferent polarization analyzer, can be used simulta-
neously. In one of the earliest works with a
polarimetric setup similar to that employed here,47

two channels were used, one with a circular analyzer
and one with no analyzer �i.e., one channel for the
retardance measurement and one for diattenuation�.
Alternatively an additional modulator can be in-
cluded in the postsample optics; here beat-frequency
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analysis yields the polarimetric data.50,51,81 Since
many scanning probe instruments have a limited
number of built-in input channels and since NSOM
exhibits particularly low signal levels, the latter
strategy may prove a better solution. As discussed
above Fourier analysis polarimetry facilitates the use
of additional modulators since the acquisition of ad-
ditional Fourier components of the signal is simply a
matter of making minor changes to the data-
acquisition software.

10. Summary

This work has demonstrated how NSOM polarimetry
can be used for quantitative measurements of retar-
dance and diattenuation in the most general sense.
First, we demonstrated an application of the Jones
matrix formalism to an NSOM polarimeter with sev-
eral improvements over previous work. In particu-
lar we showed how to measure tip diattenuation and
residual fiber retardance and properly account for
these properties in determination of the diattenua-
tion and retardance of the sample. In contrast to
previous work the diattenuating and fast axes need
not be aligned in either the sample or NSOM probe.
Although our technique relies on the assumption that
the sample diattenuation and retardance are small,
this approximation is justified in thin specimens.
We have shown that when the usual procedure for
nulling the polarimeter is performed, tip diattenua-
tion results in a residual retardance. Since this re-
sidual retardance is typically comparable in
magnitude to the tip diattenuation �and sample prop-
erties� it cannot be ignored in polarimetric analysis.
Accordingly, the residual retardance must be mea-
sured and used in calculating the sample properties.
We find that tips with diattenuation of less than 0.1
are suitable for NSOM polarimetry if the analysis
procedures described in Sections 4 and 6 are used.

It was shown that measurements of diattenua-
tion and retardance in thin-film samples by use of
NSOM contain uncertainties due to changes in the
tip diattenuation during scanning, although the
drift in retardance with time also contributes to
error. A good measurement of the sample proper-
ties requires that tip diattenuation and retardance
be measured before and after every scan. In addi-
tion to providing a means to gauge the noise-limited
uncertainty, measurements of tip diattenuation
and retardance provide information regarding sys-
tematic changes in these properties during the
course of data collection. We have also suggested
that these errors can be reduced or eliminated by
adding an additional collection channel or addi-
tional modulator�s� so that all the necessary data
can be acquired in a single scan.

We have demonstrated the utility of Fourier anal-
ysis for NSOM polarimetry, which permits us to mea-
sure many Fourier components of a modulated signal
while using only one input channel. Since the num-
ber of builtin data-collection channels on many scan-
ning probe instruments is limited, this is a significant
improvement over previous efforts. Indeed in prin-

ciple this strategy would allow one to measure all 16
components of the Mueller matrix by using this single
channel, as described by Azzam.81 Although our cal-
culations and models consider pulled-fiber aperture
probes, there is no reason that an identical analysis
cannot be performed for microfabricated aperture
probes,37,78–80 so long as their diattenuation is
smaller than 0.1.

Finally, we have discussed the limitations of a
Jones- or Mueller-matrix approach, which does not
handle the confined fields of an NSOM probe cor-
rectly. Models to rectify the situation, which were
briefly discussed above, will be the subject of future
work.
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